MATH20132 Calculus of Several Variable.

Solutions to Problems 11 Extrema \& Saddle Points

1. Suppose

$$
M=\left(\begin{array}{ll}
a & b \\
b & c
\end{array}\right)
$$

is a matrix with real entries. Prove
i. If $\operatorname{det} M>0$ (in particular $a \neq 0$) then
a. $\quad M$ is positive definite if $a>0$;
b. $\quad M$ is negative definite if $a<0$.
ii. If $\operatorname{det} M<0$, then M is indefinite.
iii. If $\operatorname{det} M=0$ then M is nondefinite.

Solution Consider, for $a \neq 0, \mathbf{x}^{T} M \mathbf{x}$ written as

$$
\begin{align*}
\left(\begin{array}{ll}
x & y
\end{array}\right)\left(\begin{array}{ll}
a & b \\
b & c
\end{array}\right)\binom{x}{y} & =a x^{2}+2 b x y+c y^{2} \\
& =a\left(x^{2}+\frac{2 b}{a} x y\right)+c y^{2} \\
& =a\left(x+\frac{b y}{a}\right)^{2}-\frac{b^{2} y}{a}+\frac{a c y^{2}}{a} \\
& =a\left(x+\frac{b y}{a}\right)^{2}+\frac{\operatorname{det} M}{a} y^{2} \tag{1}
\end{align*}
$$

i. a. $\operatorname{det} M>0$ and $a>0$. Then the coefficients of both squares in (1) are positive so $\mathbf{x}^{T} M \mathbf{x} \geq 0$ for all \mathbf{x}, and is only 0 if $y=x=0$. Thus M is positive definite.
i. b. $\operatorname{det} M>0$ and $a<0$. Then $(\operatorname{det} M) / a<0$ so the coefficients of both squares in (1) are negative so $\mathbf{x}^{T} M \mathbf{x} \leq \mathbf{0}$ for all \mathbf{x}, and is only 0 if $y=x=0$. Thus M is negative definite.
ii. If $\operatorname{det} M<0$ then, whatever the sign of $a \neq 0$, the coefficients a and $(\operatorname{det} M) / a$ will be of opposite signs.

If $\mathbf{x}_{1}=(1,0)^{T}$ then $\mathbf{x}_{1}^{T} M \mathbf{x}_{1}=a$, while if $\mathbf{x}_{2}=(-b / a, 1)^{T}, \mathbf{x}_{2}^{T} M \mathbf{x}_{2}=$ $(\operatorname{det} M) / a$. Thus $\mathbf{x}^{T} M \mathbf{x}$ takes both positive and negative values, i.e. it is indefinite.
iii. If $\operatorname{det} M=0$ then $\mathbf{x}^{T} M \mathbf{x}=0$ when $\mathbf{x}=(-b, a)^{T} \neq \mathbf{0}$ and so is nondefinite.

The above argument is based on $a \neq 0$ but if $\operatorname{det} M>0$, i.e. $a c-b^{2}>0$ we must have $a \neq 0$. So the possibility of $a=0$ only occurs when $\operatorname{det} M<0$. If $a=0$ complete the square for y, when, for $c \neq 0$,

$$
\mathbf{x}^{T} M \mathbf{x}=c\left(y+\frac{b x}{c}\right)^{2}-\frac{b^{2}}{c} x^{2}=c\left(y+\frac{b x}{c}\right)^{2}+\frac{\operatorname{det} M}{c} x^{2} .
$$

Again, whatever the sign of $c \neq 0$, the signs of the coefficients of the squares are different and so $\mathbf{x}^{T} M \mathbf{x}$ is indefinite.

This leaves the case $a=c=0$. But then the form is simply $-2 b x y$ which takes positive and negative values. Hence, in this final case, the form is indefinite.
2. Find the critical points of the following functions.
i. $\quad f: \mathbb{R}^{2} \rightarrow \mathbb{R}, f(\mathbf{x})=x^{3}+x-4 x y-2 y^{2}$;
ii. $\quad f: \mathbb{R}^{2} \rightarrow \mathbb{R}, f(\mathbf{x})=x(y+1)-x^{2} y$;
iii. $\quad f: \mathbb{R}^{2} \rightarrow \mathbb{R}, f(\mathbf{x})=x^{3}-6 x y+y^{3}$;
iv. $f: \mathbb{R}^{3} \rightarrow \mathbb{R}, f(\mathbf{x})=x^{4}+z^{4}-2 x^{2}+y^{2}-2 z^{2}$;
v. $f: \mathbb{R}^{3} \rightarrow \mathbb{R}, f(\mathbf{x})=x^{2}+y^{2}+z^{2}+2 x y z$.

Use the Hessian matrix to determine whether each critical point is a local maximum, a local minimum or a saddle point.

Solution i. The critical points simultaneously satisfy $\nabla f(\mathbf{x})=\mathbf{0}$ which in component form becomes

$$
3 x^{2}+1-4 y=0 \text { and }-4 x-4 y=0
$$

From the second $y=-x$, which in the first gives $3 x^{2}+4 x+1=0$. Thus $x=-1$ or $-1 / 3$. These give the critical points $(-1,1)^{T}$ and $(-1 / 3,1 / 3)^{T}$.

The Hessian matrix is

$$
H f(\mathbf{x})=\left(\begin{array}{rr}
6 x & -4 \\
-4 & -4
\end{array}\right)
$$

At $\mathbf{x}_{1}=(-1,1)^{T}$ this gives

$$
H f\left(\mathbf{x}_{1}\right)=\left(\begin{array}{ll}
-6 & -4 \\
-4 & -4
\end{array}\right)
$$

which has determinant 8 and so, since $a_{11}<0$, the matrix is negative definite and f has a local maximum.
At $\mathbf{x}_{2}=(-1 / 3,1 / 3)^{T}$ this gives

$$
H f\left(\mathbf{x}_{2}\right)=\left(\begin{array}{ll}
-2 & -4 \\
-4 & -4
\end{array}\right)
$$

which has determinant -8 . Therefore the matrix is indefinite and f has a saddle at \mathbf{x}_{2}.
ii. Critical points satisfy

$$
y+1-x^{2}=0 \text { and } x-x^{2}=0
$$

From the second, $x=0$ or 1 . If $x=0$ the first gives $y=-1$. If $x=1$ the first gives $y=1$. So the two critical points are $\mathbf{x}_{1}=(0,-1)^{T}$ and $\mathrm{x}_{2}=(1,1)^{T}$.

The Hessian matrix is

$$
H f(\mathbf{x})=\left(\begin{array}{cc}
-2 y & 1-2 x \\
1-2 x & 0
\end{array}\right)
$$

The determinant is -1 at both critical points and so they are both saddle points.
iii. Critical points satisfy

$$
3 x^{2}-6 y=0 \text { and }-6 x+3 y^{2}=0 .
$$

From the first equation $y=x^{2} / 2$. In the second this values of y gives $2 x=\left(x^{2} / 2\right)^{2}$, i.e. $x^{4}=8 x$. This means either $x=0$ or $x=2$. So the two critical points are $\mathbf{x}_{1}=(0,0)^{T}$ and $\mathbf{x}_{2}=(2,2)^{T}$.

The Hessian matrix is

$$
H f(\mathbf{x})=\left(\begin{array}{cc}
6 x & -6 \\
-6 & 6 y
\end{array}\right)
$$

Then $\operatorname{det} \operatorname{Hf}\left(\mathbf{x}_{1}\right)=-36<0$ so \mathbf{x}_{1} is a saddle point.

Also $\operatorname{det} \operatorname{Hf}\left(\mathbf{x}_{2}\right)=108>0$ with $a_{11}=12>0$ and so \mathbf{x}_{2} is a local minimum.
iv. Critical points satisfy

$$
4 x^{3}-4 x=0, \quad d_{2} f(\mathbf{x})=2 y=0 \quad \text { and } \quad 4 z^{3}-4 z=0
$$

Thus $y=0, x=0$ or ± 1 and $z=0$ or ± 1. This gives 9 critical points.
The Hessian matrix is

$$
H f(\mathbf{x})=\left(\begin{array}{ccc}
12 x^{2}-4 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 12 z^{2}-4
\end{array}\right)
$$

That the non-zero entries only lie on the diagonal simplifies the problem.
At $(0,0,0)^{T}$, the Hessian matrix is

$$
\left(\begin{array}{rrr}
-4 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & -4
\end{array}\right)
$$

With entries of different sign we have a saddle point.
At $(\pm 1,0,0)^{T}$, the Hessian matrix is

$$
\left(\begin{array}{rrr}
8 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & -4
\end{array}\right)
$$

Again we have a saddle point. Similarly at $(0,0, \pm 1)^{T}$ we will have a saddle point.

In the remaining four cases $(\pm 1,0, \pm 1)^{T}$ the Hessian matrix is

$$
\left(\begin{array}{lll}
8 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 8
\end{array}\right) .
$$

With all entries positive we have local minima at these four points.
v. Critical points satisfy

$$
2 x+2 y z=0, \quad 2 y+2 x z=0 \quad \text { and } \quad 2 z+2 x y=0 .
$$

That is $x+y z=0, y+x z=0$ and $z+x y=0$.

Substitute the first into the third, so $z-y^{2} z=0$. Thus, either $z=0$ or $y=1$ or $y=-1$.

If $z=0$ then $x=y=0$.
If $y=1$ then $x+z=0$ and $x z=-1$. This has two solutions $(x, z)=$ $(1,-1)$ or $(-1,1)$.

If $y=-1$ then $x-z=0$ and $x z=1$. This has two solutions $(x, z)=(1,1)$ or $(-1,-1)$.

Hence we have found 5 critical points $(0,0,0)^{T},(1,1,-1)^{T},(-1,1,1)^{T}$, $(1,-1,1)^{T}$ and $(-1,-1,-1)^{T}$.

The Hessian matrix is

$$
H f(\mathbf{x})=\left(\begin{array}{ccc}
2 & 2 z & 2 y \\
2 z & 2 & 2 x \\
2 y & 2 x & 2
\end{array}\right)
$$

At $(0,0,0)^{T}$ the matrix is

$$
\left(\begin{array}{lll}
2 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 2
\end{array}\right) .
$$

With positive entries the point is a local minimum.
At $(1,1,-1)^{T}$ the matrix is

$$
\left(\begin{array}{rrr}
2 & -2 & 2 \\
-2 & 2 & 2 \\
2 & 2 & 2
\end{array}\right) .
$$

Calculating the determinants of the principle minors $\operatorname{det} A_{1}=2, \operatorname{det} A_{2}=$ 0 and $\operatorname{det} A_{3}=-32$. Because of the 0 for one of these determinants the point is a saddle point.

In fact, for all the points $(1,1,-1)^{T},(-1,1,1)^{T},(1,-1,1)^{T}$ and $(-1,-1,-1)^{T}$ we have $z= \pm 1$ so $\operatorname{det} A_{2}=0$ for the Hessian matrices for each point. Hence all the points are saddle points.

