Solutions to Problems 11 Extrema & Saddle Points

1. Suppose

$$M = \left(\begin{array}{cc} a & b \\ b & c \end{array}\right),$$

is a matrix with real entries. Prove

- i. If det M > 0 (in particular $a \neq 0$) then
 - a. M is positive definite if a > 0;
 - b. M is negative definite if a < 0.
- ii. If det M < 0, then M is indefinite.
- iii. If det M = 0 then M is nondefinite.

Solution Consider, for $a \neq 0$, $\mathbf{x}^T M \mathbf{x}$ written as

$$\begin{pmatrix} x & y \end{pmatrix} \begin{pmatrix} a & b \\ b & c \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = ax^{2} + 2bxy + cy^{2}$$

$$= a\left(x^{2} + \frac{2b}{a}xy\right) + cy^{2}$$

$$= a\left(x + \frac{by}{a}\right)^{2} - \frac{b^{2}y}{a} + \frac{acy^{2}}{a}$$

$$= a\left(x + \frac{by}{a}\right)^{2} + \frac{\det M}{a}y^{2}.$$

$$(1)$$

i. a. det M > 0 and a > 0. Then the coefficients of both squares in (1) are positive so $\mathbf{x}^T M \mathbf{x} \ge 0$ for all \mathbf{x} , and is only 0 if y = x = 0. Thus M is positive definite.

i. b. det M > 0 and a < 0. Then $(\det M) / a < 0$ so the coefficients of both squares in (1) are negative so $\mathbf{x}^T M \mathbf{x} \leq \mathbf{0}$ for all \mathbf{x} , and is only 0 if y = x = 0. Thus M is negative definite.

ii. If det M < 0 then, whatever the sign of $a \neq 0$, the coefficients a and $(\det M) / a$ will be of *opposite* signs.

If $\mathbf{x}_1 = (1,0)^T$ then $\mathbf{x}_1^T M \mathbf{x}_1 = a$, while if $\mathbf{x}_2 = (-b/a, 1)^T$, $\mathbf{x}_2^T M \mathbf{x}_2 = (\det M)/a$. Thus $\mathbf{x}^T M \mathbf{x}$ takes both positive and negative values, i.e. it is indefinite.

iii. If det M = 0 then $\mathbf{x}^T M \mathbf{x} = 0$ when $\mathbf{x} = (-b, a)^T \neq \mathbf{0}$ and so is nondefinite.

The above argument is based on $a \neq 0$ but if det M > 0, i.e. $ac - b^2 > 0$ we must have $a \neq 0$. So the possibility of a = 0 only occurs when det M < 0. If a = 0 complete the square for y, when, for $c \neq 0$,

$$\mathbf{x}^T M \mathbf{x} = c \left(y + \frac{bx}{c} \right)^2 - \frac{b^2}{c} x^2 = c \left(y + \frac{bx}{c} \right)^2 + \frac{\det M}{c} x^2.$$

Again, whatever the sign of $c \neq 0$, the signs of the coefficients of the squares are different and so $\mathbf{x}^T M \mathbf{x}$ is indefinite.

This leaves the case a = c = 0. But then the form is simply -2bxy which takes positive and negative values. Hence, in this final case, the form is indefinite.

2. Find the critical points of the following functions.

i. $f : \mathbb{R}^2 \to \mathbb{R}, f(\mathbf{x}) = x^3 + x - 4xy - 2y^2;$ ii. $f : \mathbb{R}^2 \to \mathbb{R}, f(\mathbf{x}) = x(y+1) - x^2y;$ iii. $f : \mathbb{R}^2 \to \mathbb{R}, f(\mathbf{x}) = x^3 - 6xy + y^3;$ iv. $f : \mathbb{R}^3 \to \mathbb{R}, f(\mathbf{x}) = x^4 + z^4 - 2x^2 + y^2 - 2z^2;$ v. $f : \mathbb{R}^3 \to \mathbb{R}, f(\mathbf{x}) = x^2 + y^2 + z^2 + 2xyz.$

Use the Hessian matrix to determine whether each critical point is a local maximum, a local minimum or a saddle point.

Solution i. The critical points simultaneously satisfy $\nabla f(\mathbf{x}) = \mathbf{0}$ which in component form becomes

$$3x^2 + 1 - 4y = 0$$
 and $-4x - 4y = 0$.

From the second y = -x, which in the first gives $3x^2 + 4x + 1 = 0$. Thus x = -1 or -1/3. These give the critical points $(-1, 1)^T$ and $(-1/3, 1/3)^T$.

The Hessian matrix is

$$Hf(\mathbf{x}) = \begin{pmatrix} 6x & -4 \\ -4 & -4 \end{pmatrix}.$$

At $\mathbf{x}_1 = (-1, 1)^T$ this gives

$$Hf(\mathbf{x}_1) = \left(\begin{array}{cc} -6 & -4\\ -4 & -4 \end{array}\right)$$

which has determinant 8 and so, since $a_{11} < 0$, the matrix is negative definite and f has a local maximum.

At $\mathbf{x}_2 = (-1/3, 1/3)^T$ this gives

$$Hf(\mathbf{x}_2) = \left(\begin{array}{cc} -2 & -4\\ -4 & -4 \end{array}\right)$$

which has determinant -8. Therefore the matrix is indefinite and f has a saddle at \mathbf{x}_2 .

ii. Critical points satisfy

$$y + 1 - x^2 = 0$$
 and $x - x^2 = 0$.

From the second, x = 0 or 1. If x = 0 the first gives y = -1. If x = 1 the first gives y = 1. So the two critical points are $\mathbf{x}_1 = (0, -1)^T$ and $\mathbf{x}_2 = (1, 1)^T$.

The Hessian matrix is

$$Hf(\mathbf{x}) = \begin{pmatrix} -2y & 1-2x \\ 1-2x & 0 \end{pmatrix}.$$

The determinant is -1 at both critical points and so they are both saddle points.

iii. Critical points satisfy

$$3x^2 - 6y = 0$$
 and $-6x + 3y^2 = 0$.

From the first equation $y = x^2/2$. In the second this values of y gives $2x = (x^2/2)^2$, i.e. $x^4 = 8x$. This means either x = 0 or x = 2. So the two critical points are $\mathbf{x}_1 = (0,0)^T$ and $\mathbf{x}_2 = (2,2)^T$.

The Hessian matrix is

$$Hf(\mathbf{x}) = \left(\begin{array}{cc} 6x & -6\\ -6 & 6y \end{array}\right).$$

Then det $Hf(\mathbf{x}_1) = -36 < 0$ so \mathbf{x}_1 is a saddle point.

Also det $Hf(\mathbf{x}_2) = 108 > 0$ with $a_{11} = 12 > 0$ and so \mathbf{x}_2 is a local minimum.

iv. Critical points satisfy

$$4x^3 - 4x = 0$$
, $d_2f(\mathbf{x}) = 2y = 0$ and $4z^3 - 4z = 0$.

Thus y = 0, x = 0 or ± 1 and z = 0 or ± 1 . This gives 9 critical points.

The Hessian matrix is

$$Hf(\mathbf{x}) = \left(\begin{array}{rrrr} 12x^2 - 4 & 0 & 0\\ 0 & 2 & 0\\ 0 & 0 & 12z^2 - 4\end{array}\right).$$

That the non-zero entries only lie on the diagonal simplifies the problem. At $(0,0,0)^T$, the Hessian matrix is

$$\left(\begin{array}{rrr} -4 & 0 & 0\\ 0 & 2 & 0\\ 0 & 0 & -4 \end{array}\right).$$

With entries of different sign we have a saddle point.

At $(\pm 1, 0, 0)^T$, the Hessian matrix is

$$\left(\begin{array}{rrr} 8 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & -4 \end{array}\right).$$

Again we have a saddle point. Similarly at $(0, 0, \pm 1)^T$ we will have a saddle point.

In the remaining four cases $(\pm 1, 0, \pm 1)^T$ the Hessian matrix is

$$\left(\begin{array}{rrrr} 8 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 8 \end{array}\right).$$

With all entries positive we have local minima at these four points.

v. Critical points satisfy

$$2x + 2yz = 0$$
, $2y + 2xz = 0$ and $2z + 2xy = 0$.

That is x + yz = 0, y + xz = 0 and z + xy = 0.

Substitute the first into the third, so $z - y^2 z = 0$. Thus, either z = 0 or y = 1 or y = -1.

If z = 0 then x = y = 0.

If y = 1 then x + z = 0 and xz = -1. This has two solutions (x, z) = (1, -1) or (-1, 1).

If y = -1 then x - z = 0 and xz = 1. This has two solutions (x, z) = (1, 1) or (-1, -1).

Hence we have found 5 critical points $(0,0,0)^T$, $(1,1,-1)^T$, $(-1,1,1)^T$, $(1,-1,1)^T$ and $(-1,-1,-1)^T$.

The Hessian matrix is

$$Hf(\mathbf{x}) = \begin{pmatrix} 2 & 2z & 2y \\ 2z & 2 & 2x \\ 2y & 2x & 2 \end{pmatrix}.$$

At $(0,0,0)^T$ the matrix is

$$\left(\begin{array}{rrrr} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{array}\right).$$

With positive entries the point is a local minimum.

At $(1, 1, -1)^T$ the matrix is

$$\left(\begin{array}{rrrr} 2 & -2 & 2 \\ -2 & 2 & 2 \\ 2 & 2 & 2 \end{array}\right).$$

Calculating the determinants of the principle minors det $A_1 = 2$, det $A_2 = 0$ and det $A_3 = -32$. Because of the 0 for one of these determinants the point is a saddle point.

In fact, for all the points $(1, 1, -1)^T$, $(-1, 1, 1)^T$, $(1, -1, 1)^T$ and $(-1, -1, -1)^T$ we have $z = \pm 1$ so det $A_2 = 0$ for the Hessian matrices for each point. Hence all the points are saddle points.